Logo

Theoretical Background

  • Birth-and-death Processes
    • Custom Models
  • Simulation Algorithms
    • Exact
    • \(\tau\) leaping
    • Midpoint approximation
    • Galton–Watson approximation
    • Summary
    • Reproducibility
  • Transition Probabilities
    • Matrix exponential
    • Uniformization
    • Erlangization
    • Inverse Laplace transform
    • Diffusion approximation
    • Ornstein–Uhlenbeck approximation
    • Galton–Watson approximation
    • Simulation
    • Summary
  • Parameter Estimation
    • Direct Numerical Maximization
    • Expectation Maximization
      • Expectation Step Techniques
      • Acceleration
    • Least Squares Estimation
    • Approximate Bayesian Computation
      • Customized Distance
    • Known Parameters
    • Parameter Constraints
    • Confidence Regions
    • Continuously Observed Data
    • Optimization Options
  • Forecasting

Core Functions API

  • birdepy.probability()
    • probability()
    • birdepy.probability(method=’da’)
      • probability_da()
    • birdepy.probability(method=’Erlang’)
      • probability_Erlang()
    • birdepy.probability(method=’expm’)
      • probability_expm()
    • birdepy.probability(method=’gwa’)
      • probability_gwa()
    • birdepy.probability(method=’gwasa’)
      • probability_gwasa()
    • birdepy.probability(method=’ilt’)
      • probability_ilt()
    • birdepy.probability(method=’oua’)
      • probability_oua()
    • birdepy.probability(method=’sim’)
      • probability_sim()
    • birdepy.probability(method=’uniform’)
      • probability_uniform()
  • birdepy.estimate()
    • estimate()
    • birdepy.estimate(framework=’abc’)
      • discrete_est_abc()
    • birdepy.estimate(framework=’dnm’)
      • discrete_est_dnm()
    • birdepy.estimate(framework=’em’)
      • discrete_est_em()
    • birdepy.estimate(framework=’lse’)
      • discrete_est_lse()
    • birdepy.estimate(scheme=’continuous’)
      • continuous_est_dnm()
  • birdepy.simulate.discrete()
    • discrete()
  • birdepy.simulate.continuous()
    • continuous()
  • birdepy.forecast()
    • forecast()

CUDA Functions API

  • birdepy.gpu_functions.discrete()
    • discrete()
  • birdepy.gpu_functions.probability()
    • probability()

Development

  • Bug Reports and Contributing
  • Release Notes
    • 1.0.0
    • 0.0.26
    • 0.0.12
    • 0.0.11
    • 0.0.10
    • 0.0.9
    • 0.0.8
    • 0.0.7
    • 0.0.6
    • 0.0.5
    • 0.0.4
    • 0.0.3
    • 0.0.2
    • 0.0.1
BirDePy
  • Index

Index

C | D | E | F | P

C

  • continuous() (in module birdepy.simulate)
  • continuous_est_dnm() (in module birdepy.interface_dnm)

D

  • discrete() (in module birdepy.gpu_functions)
    • (in module birdepy.simulate)
  • discrete_est_abc() (in module birdepy.interface_abc)
  • discrete_est_dnm() (in module birdepy.interface_dnm)
  • discrete_est_em() (in module birdepy.interface_em)
  • discrete_est_lse() (in module birdepy.interface_lse)

E

  • estimate() (in module birdepy)

F

  • forecast() (in module birdepy)

P

  • probability() (in module birdepy)
    • (in module birdepy.gpu_functions)
  • probability_da() (in module birdepy.probability_da)
  • probability_Erlang() (in module birdepy.probability_Erlang)
  • probability_expm() (in module birdepy.probability_expm)
  • probability_gwa() (in module birdepy.probability_gwa)
  • probability_gwasa() (in module birdepy.probability_gwasa)
  • probability_ilt() (in module birdepy.probability_ilt)
  • probability_oua() (in module birdepy.probability_oua)
  • probability_sim() (in module birdepy.probability_sim)
  • probability_uniform() (in module birdepy.probability_uniform)

© Copyright 2021, Sophie Hautphenne and Brendan Patch.

Built with Sphinx using a theme provided by Read the Docs.